
17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China 

3D Image Reconstruction from Low Energy 
and Noisy X-Ray Projection Data 

 
Valery VENGRINOVICH, Sergei ZOLOTAREV, Iliya RESHETOUSKI, IAPH, Minsk, 

Belarus Tel: 
+375-17-2842344, Fax: +375-17-2842344 E-mail: veng@iaph.bas-net.by Web:  
http://iaph.bas-net.by 
Oleg TROFIMOV, Alexej LIKHACHEV, Institute of Automation and Electrometry SB 
RAS, Novosibirsk, Russia. E-mail: ipm1@iae.nsk.su Web: http://www.iae.nsk.su 
 
 
Abstract 

 
Conventional tomography offers an effective tool for medical diagnostics, non-destructive 

testing of engineering constructions and checking the quality of industrial products. The 
tomographic imaging of objects in case of a restricted angle for observation, limited number of 
projections, and/or restricted x-ray source power becomes strongly ill conditioned. The article 
deals with the last case, within which the linear attenuation for a partial set of views does not 
valid any more: thus for them the beam hardening effect introduces substantial uncertainty to 
reconstruction results. Two kind of approaches are  considered: 1) beam hardening effect 
influence compensation with some kind of linearization procedure in CAD description; 2) 
introducing 2D and 3D hull deformation algorithms, which are highly effective for tomographic 
reconstruction of  binary  object. 
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1. Background 

 
Recently industrial X-ray tomography accelerated very quickly: the production of shaped 

castings, complex automotive parts, turbine blades, precise mechanisms, multi layer electronic 
boards, biological structures, etc. is inconceivable without this technology. It allows to observe 
the hidden cavities, provide non destructive testing, measure linear dimensions, approve complex 
structures and so on.  

Tomographic visualization helps to recover the three-dimensional digital images of 
manufacturing workpieces and processes. Usually applied Radon transformation (the 
fundamentals are available in [1]) and its 3D version named filtered back projections (FBP) 
(fundamentals are available, for example, in [2]) yield excellent results for the complete set of 
projections, the case defined by the entirely filled Radon space. However, in case of a restricted  
angle for observation and small number of projections the acquisition data are limited and noisy, 
thus the reconstruction problem becomes strongly ill conditioned. Bayesian iteration methods are 
sometimes very advantageous to improve the quality of final image (look, for example, [3-6]). 

Limited and noisy data conditions are appear also in case of  restricted x-ray source 
power. That means that within entire set of observation angles there are a limited set for which 
the x-ray linear absorption rule does not valid any more. For them the beam hardening effect 
introduces substantial uncertainty to reconstruction results, which are finally corrupted by this 
effect. The image then can be reconstructed with the help of conventional iterative algorithms 
only by neglecting corrupted data and worsening thus the final image quality [7,8,9]. Use of prior 
information in the form of image statistical properties is sometimes very helpfull [10-14]. 
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The situation like limited x-ray source power is very typical for industrial tomography. It takes 
place when the part is very large or extended in one or several directions, or the material has too 
large absorption coefficient, also in all cases demanding decreasing of the radiation dose. It 
should be noted that the decreasing of utilized x-ray source energy is motivated by both 
decreasing of the radiation dose and focal spot dimension respectively. Thus it is important to 
develop reconstruction tools able to overcome data deficit typical for this kind of restrictions: 
limited observation angle and corrupted x-ray projections. 

Two kind of approaches are  considered in the article as used here: 1) beam hardening 
effect influence compensation with some kind of linearization procedure in CAD description 
illustrated by the image reconstruction of turbine blades; 2) introducing 2D and 3D hull 
deformation algorithms, which are highly effective for tomographic reconstruction of  binary  
objects, illustrated by the engine cylinder head image reconstruction. 
 
2. Iterative reconstruction of turbine blades images 
 

Turbine blades are widely used in conventional engines. They have numerous types and 
shapes of cooling cavities, which should be done with high precision.  One of them is shown in 
the fig.1, which cross section image, restored with FBP algorithm from projections acquired 
with the help of 420 kV tube, is shown in the fig. 3. There is no way to observe the blade 
internal structure non destructively except of tomographic imaging. It is usual that the ratio of 
linear dimensions in self perpendicular directions could be by factor 5 or more . Thus the x-ray 
source power should be sufficient to penetrate linearly through longer distance what requires 
420 kV x-ray tube available to penetrate through  a small blade with only 70 mm size in longer 
direction (Fig. 3).  

 

 
     
        Fig. 1. Turbine blade used for experiments.         Fig. 2. 480 blade projections made with    
              125 kV x-ray source by prof. E.Vainberg  
 
Further in the figure 2 the linear 480 projections of the blade’s cross sections are pictured (so 
called synogram), containing 1024х480 16 digit values. In this case the X-ray shooting was done 
at a tube voltage 125 кВ (integrally required 420 kV), and, the scattered radiation was avoided 
by remoteness from detectors and collimation. Due to loosened radiation power the projections 
in elongated directions are saturated, fuzzy and noisy. In the fig. 4 the cross section of a blade 
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reconstructed from projections in the fig.2 with FBP algorithm is shown, which illustrates its 
incapability to overcome the data deficit originated from low source power.   
The technique proposed here includes the correction of experimental data considering beam 
hardening effect.  For this the experimental calibration (special x-ray test) was done using the 
125 kV polychromatic synogram (fig.2) and the CAD of representation of the known true shape 
of the regular blade shown in the fig.3 (kind of a quantitative a priory knowledge). The resultant  

 
Fig.3 Blade image reconstructed from 480  Fig. 4. Blade image reconstructed from 480 
projections made with 420 kV x-ray source  projections made with 125 kV x-ray source 
using FBP algorithm      using FBP algorithm                                                                
  
diagram and its polynomial approximation considering beam hardening effect are shown in the 
fig.5. It aims to provide correction of all experimental data during the further reconstruction 
process. 

   
Finally the  Bayesian reconstruction [12] of the blade’s image was made basing on only 240 
circular projections. In a fig. 6 and 7 the outcomes of iterative reconstruction after 16 and 20 
iterations respectively are pictured.  The obtained spatial resolution already is close enough to 
that shown in the fig. 3 and much better than that acquired with regular FBP algorithm in the fig. 
4.  
Thus the way for compensation of input data incompleteness on the basis of implementation of 
beam hardening correction in the proposed manner seems to be efficient tool for data correction 
before starting with Bayesian algorithms basing on available number of projections and a priory 
known CAD of representation  of an object under testing. The further development and 
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elaboration of this approach should allow ton  essentially improve the efficiency of the 
tomographic visualization of complex articles generally and turbine blades in particular using 
minifocal x-ray sources with low-level voltage.   
 

3. Surface reconstruction of 3D binary 
industrial object  given its CAD 
representation: the solution of a straight 
forward problem 
 

The surface S is represented by a set of 
surface elements 

UuSu ,,1: Λ= , 21,0, 21 uuSSSS uuu ≠== ΙΥ  
specified by triangles with vertexes defining the 
nodes of a discrete grid. Let assign the 
projection of the surface element uS  in the n-th 
detector plane as n

uσ . The partition of the 
surface is implemented in such a way that the 

osculating sides of adjacent triangles and their common vertexes belong only to one of the 
vertexes.  

The direct operator sequentially searches through all inner hull elements for: 
(a) the determination of the projection of triangle Su  on the current detector plane  
(b) the definition of triangle boundaries  
(c) the selection of all pixels n

n
j Jjp ,,1: Λ=  with the center located inside the triangle n

uσ  or 
on its boundaries 

(d) the cross points of the rays, passing through the inner and boundary pixels of the triangle 
n
uσ , with the inner and outer object surface.  

The ray sums )( pf c
n  for pixel n

n
j Jjp ,,1: Λ= , defining the corresponding ray, are calculated as 

the distances between corresponding pairs of points. Hence the ray sums can be determined after 
calculating the forward operator NnpfMA c

nn ,,1),())(( Λ==R . The functional  
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represents the difference between the current  surface S , which is given by a set of discrete grid 
knots IiM i ,,1, Λ= , and the  surface, being the best fit to the measured data. 
Average value of standard deviation is 
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4. Surface reconstruction of 3D binary industrial objects, given its CAD representation: the 
solution of an inverse problem 

 

The iteration procedure for reconstructing the  surface is implemented as follows from[13]. 
All N rays are passing through every knot iM , which has an intersection with the corresponding 
detector planes in the pixels Nnpn

j ,,1,
*

Λ= . For those pixels the differences between the 

measured and the calculated values of the ray sums )()()( pfpfpf m
n

c
nn −=∆  are evaluated in 

avaerage form. From this result the weighed mean deviation )( iMΣ  is determined 

Fig.6. Blade image reconstructed from 240 
projections made with 125 kV x-ray source 
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( ) ( )∑∆=Σ
n
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Finally the corresponding displacement of the node iM  is given by 

 ( ) ,10    ),( )0()0( <<Σ×= λλ ii MMh                                                         (4) 

where )0(λ  is the parameter of relaxation for the first iteration. 

The displacements are implemented for all nodes IiM i ,1, =  simultaneously.  The iterative 
process stops, if after three series iterations it fails to receive the better approximation.  
 The reconstruction of the head of a cylinder block was executed for so-called 

"circumferential" geometry for projections 
data collecting. The head was virtually rotated 
around its longitudinal axes and parallel and 
cone beam geometry were applied 
respectively. Three-dimensional object was 
projected on a flat matrix of detectors, which 
plane is perpendicular to a central ray of 
conical source. The distance from the source 
to the plane detector and rotation axes was 
1000 mm and 700 mm respectively. 60 
projections were done, that is much less, than 
is used for the regular computed tomography 
(several hundred projections).  Voxel 
representation of this object was created. To 

check the reconstruction accuracy seven holes were  simulated in head’s internal walls. The 
diameters of the holes varied from 2 mm to 8 mm with a step of 1 mm. The model 60 projections 
of the head of a cylinder block, both for parallel and for conical beams of rays were obtained. In 
the fig. 7 the head of a cylinder block in the STL format is shown. To illustrate them the 
corresponding simulated central cylinder head projection is shown in the fig. 8: left – supposing 
a source with sufficient voltage, named original; right – truncated supposing the source voltage is 
sufficient to penetrate through the 80 mm thickness steel wall, named truncated. Truncation was 
used to simulate the insufficiency of the source voltage to irradiate too large thickness material. 
The right picture visually demonstrates a loss of information with low energy source radiation. 
            

 For the image reconstruction both the Bayesian and newly developed hull voxel 
algorithm were used. The demonstration of their capability is shown in the fig. 9 and fig. 10.  
 

Fig. 7. 3D view of the head (STL format) 

Fig. 8. Central cylinder head projection: left – original; right – truncated for 80 mm thickness 



 6 

Fig.9 shows the central cylinder head projection after reconstruction by the Bayesian algorithm: 
left – using simulated complete data set (sufficient power source); right – using truncated data. It 
is clear that complete raw data set even from 60 x-ray projections is sufficient to be proceeded 
within Bayesian algorithm to acquire perfect reconstruction with available resolution of the 
simulated holes. Meanwhile the application of truncated data (fig. 9 right) yields blurred 
reconstructed image with strong resolution lost. 

In the fig. 10 the central cylinder head projection after reconstruction by hull-voxel algorithm 
from truncated data with binary a priori supposal is presented. Note that truncated data means 

that the depth with linear absorption law is 
limited to 80 mm while the data from all 
excessive thickness are lost on the 
projections. Meanwhile, the minimum 
direct thickness of the steel in the cylinder 
head is 200 mm. Thus the algorithm shows 
a strong capability comparing the images 
in the fig.9 and the fig. 8, right, 
respectively. For both images 
reconstruction the same truncated data 
were used. 
 
Conclusion 
 
The newly developed hull-voxel method 

of reconstruction of 3D images of industrial objects given restricted number of projections and 
extremely low voltage x-ray source has ensured  high quality of reconstruction. 
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