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ADbstract

Conventional tomography offers an effective toal rieedical diagnostics, non-destructive
testing of engineering constructions and checking guality of industrial products. The
tomographic imaging of objects in case of a re®dangle for observation, limited number of
projections, and/or restricted x-ray source powasomes strongly ill conditioned. The article
deals with the last case, within which the linetierauation for a partial set of views does not
valid any more: thus for them the beam hardenirgcefintroduces substantial uncertainty to
reconstruction results. Two kind of approaches arensidered: 1) beam hardening effect
influence compensation with some kind of lineai@matprocedure in CAD description; 2)
introducing 2D and 3D hull deformation algorithmgyich are highly effective for tomographic
reconstruction of binary object.
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1. Background

Recently industrial X-ray tomography accelerateg/\piickly: the production of shaped
castings, complex automotive parts, turbine blagesgise mechanisms, multi layer electronic
boards, biological structures, etc. is inconceigabithout this technology. It allows to observe
the hidden cavities, provide non destructive tgstmeasure linear dimensions, approve complex
structures and so on.

Tomographic visualization helps to recover the d¢hdemensional digital images of
manufacturing workpieces and processes. UsuallyliemppRadon transformation (the
fundamentals are available i) and its 3D version named filtered back projectidfFBP)
(fundamentals are available, for example@nyield excellent results for the complete set of
projections, the case defined by the entirelydilRadon space. However, in case of a restricted
angle for observation and small number of projetithe acquisition data are limited and noisy,
thus the reconstruction problem becomes stronigtpiiditioned. Bayesian iteration methods are
sometimes very advantageous to improve the quaifipal image (look, for examplé&;®).

Limited and noisy data conditions are appear ats@ase of restricted x-ray source
power. That means that within entire set of obd@wmaangles there are a limited set for which
the x-ray linear absorption rule does not valid amgre. For them the beam hardening effect
introduces substantial uncertainty to reconstructmsults, which are finally corrupted by this
effect. The image then can be reconstructed wighhiblp of conventional iterative algorithms
only by neglecting corrupted data and worsening tihe final image quality®°. Use of prior
information in the form of image statistical profyes is sometimes very helpfilfif-4.
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The situation like limited x-ray source power igwéypical for industrial tomography. It takes
place when the part is very large or extended @ anseveral directions, or the material has too
large absorption coefficient, also in all cases aeding decreasing of the radiation dose. It
should be noted that the decreasing of utilizediy-source energy is motivated by both
decreasing of the radiation dose and focal spoedsion respectively. Thus it is important to
develop reconstruction tools able to overcome dafeit typical for this kind of restrictions:
limited observation angle and corrupted x-ray pobgms.

Two kind of approaches are considered in thelarés used here: 1) beam hardening
effect influence compensation with some kind okénzation procedure in CAD description
illustrated by the image reconstruction of turbibkades; 2) introducing 2D and 3D hull
deformation algorithms, which are highly effectifer tomographic reconstruction of binary
objects, illustrated by the engine cylinder headgmreconstruction.

2. Iterative reconstr uction of turbine bladesimages

Turbine blades are widely used in conventional meg)i They have numerous types and
shapes of cooling cavities, which should be dortl tigh precision. One of them is shown in
the fig.1, which cross section image, restored WiBP algorithm from projections acquired
with the help of 420 kV tube, is shown in the f&). There is no way to observe the blade
internal structure non destructively except of tgnaphic imaging. It is usual that the ratio of
linear dimensions in self perpendicular directionald be by factor 5 or more . Thus the x-ray
source power should be sufficient to penetratealiyethrough longer distance what requires
420 kV x-ray tube available to penetrate througbmall blade with only 70 mm size in longer
direction (Fig. 3).

Fig. 1. Turbine blade used for experiments. Fig. 2. 480 blade projections made with
125 kV x-ray source by prof. E.Vainipe

Further in the figure 2 the linear 480 projectiarighe blade’s cross sections are pictured (so
called synogram), containing 10280 16 digit values. In this case the X-ray shaptiras done
at a tube voltage 12&B (integrally required 420 kV), and, the scatteradiation was avoided
by remoteness from detectors and collimation. Bukmd®sened radiation power the projections
in elongated directions are saturated, fuzzy angyndn the fig. 4 the cross section of a blade
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reconstructed from projections in the fig.2 with FFRlgorithm is shown, which illustrates its

incapability to overcome the data deficit origircafeom low source power.

The technigue proposed here includes the correctfoexperimental data considering beam
hardening effect. For this the experimental catibn (special x-ray test) was done using the
125 kV polychromatic synogram (fig.2) and the CADr@presentation of the known true shape
of the regular blade shown in the fig.3 (kind afisantitative a priory knowledge). The resultant

{

Fig.3 Blade image reconstructed from 480 Fig.ladB image reconstructed from 480
projections made with 420 kV x-ray source proasi made with 125 kV x-ray source
using FBP algorithm using FBP algorithm

diagram and its polynomial approximation considgiieam hardening effect are shown in the
fig.5. It aims to provide correction of all expeental data during the further reconstruction
process.
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Fig.5. Thickness dependence of the x-ray interisityurbine blade steel

Finally the Bayesian reconstruction [12] of th@d#'s image was made basing on only 240
circular projections. In a fig. 6 and 7 the outcenud iterative reconstruction after 16 and 20
iterations respectively are pictured. The obtaispdtial resolution already is close enough to
that shown in the fig. 3 and much better than #ltguired with regular FBP algorithm in the fig.
4.

Thus the way for compensation of input data incatgriess on the basis of implementation of
beam hardening correction in the proposed manmensé¢o be efficient tool for data correction
before starting with Bayesian algorithms basingagailable number of projections and a priory
known CAD of representation of an object undertings The further development and
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elaboration of this approach should allow ton egaly improve the efficiency of the
tomographic visualization of complex articles gaflgrand turbine blades in particular using
minifocal x-ray sources with low-level voltage.

3. Surface reconstruction of 3D binary

industrial  object given its CAD
representation: the solution of a straight
- forward problem
T — ..M’,\\,
: The surfaceS is represented by a set of
/ surface elements
\ '. / S U=1AU , S=YS,S, | S, =0u # U,

specified by triangles with vertexes defining the
i, nodes of a discrete grid. Let assign the
projection of the surface eleme§f in then-th
detector plane a@] . The partition of the
surface is implemented in such a way that the
osculating sides of adjacent triangles and themroon vertexes belong only to one of the
vertexes.
The direct operator sequentially searches throllghreer hull elements for:
(a) the determination of the projection of triandle on the current detector plane
(b) the definition of triangle boundaries
(c) the selection of all pixelp?: j =LA ,J, with the center located inside the triangig or
on its boundaries
(d) the cross points of the rays, passing through riheriand boundary pixels of the triangle
o}, with the inner and outer object surface.
The ray sumsfS(p JYor pixel p: j =LA ,J,, defining the corresponding ray, are calculated as
the distances between corresponding pairs of pditesce the ray sums can be determined after
calculating the forward operatdqR(M)), = ff(p),n=2LA ,N. The functional

.Y RM) =Y t2(p) - 7P|/ 3 1.7(p) (1)
k pr P

represents the difference between the currentase8, which is given by a set of discrete grid
knots M;,i =1A I, and the surface, being the best fit to the mealsdata.
Average value of standard deviation is

50> RM) =36,(> RM))/N. 2)

Fig.6. Blade image reconstructed from :
projections made with 125 kV x-ray source

4. Surface reconstruction of 3D binary industrial objects, given its CAD representation: the
solution of an inverse problem

The iteration procedure for reconstructing thefesg is implemented as follows fr&Hl.
All N rays are passing through every kidt, which has an intersection with the corresponding
detector planes in the pixels? ,n=1A ,N . For those pixels the differences between the
measured and the calculated values of the ray &fpip) = fc(p) - f,"(p) are evaluated in
avaerage form. From this result the weighed mearaten >(M;) is determined



5(M,)=> af, (p)/N 3)
Finally the corresponding displacement of the nijeis given by
h(M;)= A0 xZ(M;), 0<A® <1, @)

where A© is the parameter of relaxation for the first itema.
The displacements are implemented for all nolesi =1,1 simultaneously. The iterative
process stops, if after three series iteratiofeslg to receive the better approximation.

The reconstruction of the head of a cylinder bloslas executed for so-called

“circumferential® geometry for projections

‘ data collecting. The head was virtually rotated

W g ‘ - around its longitudinal axes and parallel and
i b = A cone beam geometry were applied
= respectively. Three-dimensional object was
projected on a flat matrix of detectors, which
- plane is perpendicular to a central ray of
el conical source. The distance from the source
! to the plane detector and rotation axes was
' 1000 mm and 700 mm respectively. 60
projections were done, that is much less, than
is used for the regular computed tomography
(several hundred projections). Voxel
representation of this object was created. To

Fig. 7. 3D view of the head (STL format)

check the reconstruction accuracy seven holes wamulated in head’s internal walls. The
diameters of the holes varied from 2 mm to 8 mnnwistep of 1 mm. The model 60 projections
of the head of a cylinder block, both for paralied for conical beams of rays were obtained. In
the fig. 7 the head of a cylinder block in the Sfdrmat is shown. To illustrate them the
corresponding simulated central cylinder head ptma is shown in the fig. 8: left — supposing
a source with sufficient voltage, named originight — truncated supposing the source voltage is
sufficient to penetrate through the 80 mm thickresel wall, named truncated. Truncation was
used to simulate the insufficiency of the sourckage to irradiate too large thickness material.
The right picture visually demonstrates a losswdrimation with low energy source radiation.

l

Fig. 8. Central cylinder head projection: left 4gmal; right — truncated for 80 mm thickness

For the image reconstruction both the Bayesian aedly developed hull voxel
algorithm were used. The demonstration of theiabdjty is shown in the fig. 9 and fig. 10.



Fig.9 shows the central cylinder head projectidaraieconstruction by the Bayesian algorithm:
left — using simulated complete data set (suffic@wer source); right — using truncated data. It
is clear that complete raw data set even from @&yxprojections is sufficient to be proceeded
within Bayesian algorithm to acquire perfect redangion with available resolution of the
simulated holes. Meanwhile the application of tramed data (fig. 9 right) yields blurred
reconstructed image with strong resolution lost.

nin\d

Fig.9. Central cylinder head projection after restamction by the Bayesian algorithm: |-
using simulated complete data set (sufficient paseerrce); right — using truncated data.

In the fig. 10 the central cylinder head projectafter reconstruction by hull-voxel algorithm
from truncated data with binary a priori supposapresented. Note that truncated data means
that the depth with linear absorption law is
limited to 80 mm while the data from all
excessive thickness are lost on the
projections. Meanwhile, the minimum
direct thickness of the steel in the cylinder
head is 200 mm. Thus the algorithm shows
a strong capability comparing the images
in the fig.9 and the fig. 8, right,
respectively. For both images
reconstruction the same truncated data
were used.

Fig.1C. Central cylinder head projection af
reconstruction by hull-voxel algorithm from

truncated data and binary a priori supp The newly developed hull-voxel method
of reconstruction of 3D images of industrial obgegtven restricted number of projections and
extremely low voltage x-ray source has ensured figality of reconstruction.

Conclusion
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