
Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

Interactive Geometry-Aware Segmentation for the
Decomposition of Kaleidoscopic Images

O. Klehm1,2 I. Reshetouski1,3 E. Eisemann2,4 H.-P. Seidel1 I. Ihrke1,3

1MPI Informatik 2Intel Visual Computing Institute 3Saarland University 4Delft University of Technology / Télécom ParisTech

Figure 1: a) Input: Kaleidoscope image. b) User-drawn mask (green checkerboard pattern). c) User-drawn mask isolated. d)
Approximate visual hull generated from (c) using image-based shading. e) Resulting labeling via visual hull.

Abstract

Mirror systems have recently emerged as an alternative low-cost multi-view imaging solution. The use of these
systems critically depends on the ability to compute the background of a multiply mirrored object. The images
taken in such systems show a fractured, patterned view, making edge-guided segmentation difficult. Further,
global illumination and light attenuation due to the mirrors make standard segmentation techniques fail.
We therefore propose a system that allows a user to do the segmentation manually. We provide convenient tools
that enable an interactive segmentation of kaleidoscopic images containing three-dimensional objects. Hereby, we
explore suitable interaction and visualization schemes to guide the user. To achieve interactivity, we employ the
GPU in all stages of the application, such as 2D/3D rendering as well as segmentation.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]:
Segmentation—Region growing, partitioning

1. Introduction

Until recently, surround multi-view imaging has required
the use of hardware-parallel multi-camera systems [NRK98,
WJV∗05] or the time-sequential acquisition of differ-
ent view points by moving the camera around the ob-
ject [GGSC96]. An initial study that employed inter-
reflections in mirror systems to acquire a surround light
field view of a flat surface was presented by Han and Per-
lin [HP03]. The short-coming of their technique is that ex-
tended three-dimensional objects cannot be easily handled.
The main challenge for using so-called kaleidoscopic im-
ages of extended three-dimensional objects is the occlusion
of the virtual copies of an object by the object itself or by
some other virtual copy, see Fig. 1a). Recently, Reshetouski
et al. [RMSI11] presented a geometrical solution to this

problem. The authors developed a segmentation scheme that
is based on the approximation of the object geometry by
means of visual hull reconstruction, Fig. 1d). The approx-
imate geometry is then used to determine visibility of the
object to different virtual perspective projections generated
by the mirror system, Fig. 1e).

Their method relies on a segmentation of the kaleido-
scopic image into foreground and background. The back-
ground pixels are used to determine the object geometry by
space carving. The accuracy of this approach is determined
by the quality of the image segmentation. The complexity
of images in a mirror system makes automatic segmentation
a non-trivial task. Using edges [RKB04, UPT∗08] is diffi-
cult due to the numerous non-object edges arising from mir-
ror boundaries. Standard background subtraction, taking a

c© The Eurographics Association 2012.



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images

background image and subtracting it from the image con-
taining the object, is challenging due to changing global il-
lumination conditions. Similarly, color-based segmentation
is difficult because of the attenuation introduced by the mir-
ror surfaces.

For these reasons, we propose an intuitive environment
to perform the segmentation manually, Fig. 1c). However,
even for humans the task is usually non-trivial and te-
dious. Our interactive application enables a fast manual fore-
ground/background segmentation of kaleidoscopic images
for high-quality results by guiding the user and giving con-
stant feedback Fig. 1b). In summary:

• We present an application, that allows for manual fore-
ground/background segmentation and provides feedback
to the user in the 2D kaleidoscope domain as well as the
3D domain of the visual hull.
• We describe an on-line technique for estimating the visual

hull of an object inside a kaleidoscope system of arbitrar-
ily positioned planar mirrors.
• We explore suitable interaction schemes and visualization

techniques that guide the user in rapidly creating an accu-
rate segmentation.
• We handle the heavy computations of drawing, rendering,

visual hull derivation, and labeling by exploiting the GPU.

2. Related Work

Mirror systems are an attractive low-cost alternative to
multiple-camera systems for the acquisition of multi-view
imagery. Early work included virtual stereoscopic systems
and the analysis of single camera/mirror configurations for
the design of catadioptric camera systems. Han and Per-
lin [HP03] pioneered the use of kaleidoscopic imaging sys-
tems for recording a large number of virtual views with a
low number of mirrors, exploiting inter-reflections inside the
system. They used the system in a bi-directional manner by
projecting light into it, which enables reflectance scanning.
However, the imaged surface had to be flat in order to avoid
self-occlusion of the object and its virtual counterparts.
Levoy et al. [LCV∗04] allow for three-dimensional objects
by positioning the mirrors such that no inter-reflections, and
therefore no occlusion can occur. In this setting, a separate
mirror for every virtual camera is required. Alternatively,
inter-reflections can be allowed, but the object needs to be
positioned such that overlap in the camera image [FNJV06]
is avoided, restricting flexibility. Two-mirror systems have
also been used in an active illumination context [LCT09]
and it has been shown that mirror systems with flexible ob-
ject/camera positioning can be used for multi-view imag-
ing [RMSI11] by decomposing the image into its constituent
virtual views. The basis of the computation exploits the vi-
sual hull of the object under investigation from a single sil-
houette image. The method can be extended to decompose
active illumination patterns such that they strike the object
from a single direction only [IRM∗12]. The applicability of

such flexible new imaging techniques depends heavily on an
accurate segmentation of the kaleidoscope image into fore-
ground and background.

Segmentation is one of the fundamental problems in com-
puter vision. In spite of its importance it is not considered a
solved topic. The reason for this is that, usually, semantic in-
formation dictates the goal of a segmentation algorithm. Of-
ten, these goals are user-dependent. Since the topic is vast,
we can only give a coarse overview. The earliest approaches
to the problem were based on color classification schemes
and thresholding, e.g. in suitable color spaces and by exploit-
ing histogram information [SS04]. Region-based approaches
are based on identifying areas of similar color, an exam-
ple is watershed segmentation [VS91]. A major step in the
development of segmentation algorithms came with the in-
troduction of active contours [KWT88], deformable curves
that adapt to edges while minimizing some energy functional
such as the length of the boundary curve of the segmented
region. Initially, these energies were minimized using para-
metric curve models. Geodesic active contours [CKS97] for-
mulated the task as a level set problem which allows for ar-
bitrary topology of the segmented parts. The energy func-
tionals can, e.g., be minimized with graph cuts [BJ00] but
also with convex relaxation schemes [UPT∗08]. Since the
goals of the user are usually not known beforehand, a num-
ber of interactive segmentation methods utilizing the en-
ergy minimization schemes described above have been de-
veloped [RKB04, CFRA07, UPT∗08]. Finally, alpha mat-
ting [CCSS01] can be regarded as a continuous-valued seg-
mentation of the image whereas the techniques discussed be-
fore result in a binary segmentation.

The ultimate goal of our paper is an interactive multi-
valued segmentation of an image taken within a system of
planar mirrors, Fig. 1e). The image is to be decomposed into
a number of virtual views that are present in the image. Each
pixel is to be assigned a view-projection matrix for the cor-
responding view. The basis for this is a silhouette image,
a binary segmentation of the camera image in conjunction
with the calibration parameters of the camera/mirror sys-
tem [RMSI11], Fig. 1a, c). We employ a high-level symme-
try prior (the kaleidoscope geometry) in this work in contrast
to the above techniques. In the case of kaleidoscopic image
segmentation it is not sufficient to apply the low-level prior
of preferring strong edges while maintaining a short length
of the boundary curve. There are two main reasons. First,
many fractured multiply mirrored intersection lines between
mirrors result in a high total count of strong edges that do
not demark object boundaries. Second, on the order of hun-
dreds of virtual objects are present in a single kaleidoscopic
camera image, resulting in rather long and inhomogeneous
boundaries between foreground and background.

Cosegmentation has recently been introduced as a novel
tool for segmenting a large number of images showing simi-
lar objects simultaneously. The task usually explored in this

c© The Eurographics Association 2012.



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images

area is the segmentation of internet image collections. Ex-
emplary works use scribbles in a number of images in order
to segment a much larger collection [BKP∗10, KBCC10].

While an interesting avenue for future work towards an
automated solution, currently none of the proposed tech-
niques are applicable to our problem. We therefore aim our
efforts at developing an easy to use manual tool for the kalei-
doscopic segmentation problem that provides instant feed-
back and thus enables high-quality segmentation results.

3. Overview

We start by describing the setting of our system. We assume
to have a calibrated setup consisting of a camera C, a kalei-
doscope S containing planar mirrors, and an object O with
unknown geometry inside of it. Due to reflections, the cam-
era image K, taken by C, contains a combination of several
views that are fused together into a single multi-view image.
As shown in [RMSI11], K can be decomposed into parts that
correspond to a single virtual view of the object. This de-
composition is called a labeling L of K (see Fig. 1e) ).

The principle of a kaleidoscope is illustrated in Figure 2.
It shows a number of reflected ray paths of different reflec-
tion orders shown in different colors. The unfolding proce-
dure introduced in [RMSI11] straightens the ray paths by
mirroring the physical system instead of the rays, creating a
representation of the virtual mirror world. In this representa-
tion, the physical camera is being multiplied into a number
of virtual counterparts illustrated by the dashed lines, each
describing a different virtual view. The virtual camera rays
correspond to reflected view rays of the actual camera that is
used to capture K.

We use the method of [RMSI11] to obtain the total set
of virtual cameras {C1,C2, ...,Cn} in conjunction with their
view-projection matrices. A virtual-camera image C can be
used to store for every pixel in the kaleidoscope image K
an associated set of potential virtual cameras, i.e., for ev-
ery pixel p(C), we have a set of associated virtual cameras:
Cp = {Cp1,Cp2, ...,Cpnp}, np < N, where N is the maxi-
mum level of reflections that we take into account in the de-
composition (typically N = 7), which is reasonable because
each mirror attenuates the image. We refer to the set of pixels
that are potentially assigned to a virtual camera as its foot-
print. This set can be precomputed, as it only depends on
the configuration of S and C. Any cone through a pixel from
the camera center can be followed through S. Care has to be
taken when a cone is near the border between two mirrors.
Here, it is split into two different light paths and our assump-
tion of a virtual camera would fail. Hence, we exclude these
pixels entirely from our considerations. The process is fast
and maps nicely on the GPU.

As soon as we have an object O, rays might not follow
their original path inside the kaleidoscope S, but might be in-
tercepted by O. The ray path of the camera pixels are usually

Kaleidoscope mirror
virtual mirror (1 re�ection)
virtual mirror (2 re�ections)
mirror axis
object

Figure 2: Unfolding of the ray trajectories in the kaleido-
scope results in virtual camera and object positions.

Kaleidoscope mirror
case 1
case 2

Figure 3: Placing an opaque object inside the mirror system
determines the virtual camera that sees the object from a set
of potential cameras C1,C2,C3. For the blue object position,
the ray undergoes two reflections before hitting the object
resulting in camera C3 to be the virtual view. For the red
object position there is only a single physical reflection event
before hitting the object, resulting in the virtual camera C2
to be the virtual view.

shorter than the maximum ray path utilizing all N reflections.
The presence of O, hence, reduces the actual sequence of
virtual cameras for pixel p(C): {Cp1,Cp2, ...,Cpn′p}, where
n′p ≤ np. In Fig. 3, we show how the insertion of an object
into the kaleidoscope can determine a particular virtual cam-
era from Cp for a pixel p.

The goal of this paper is to develop an interactive tech-
nique for determining the correct assignment of one vir-
tual camera (Cpn′p ) to every image pixel in a kaleidoscope
image K. Hence, the kaleidoscopic image can be decom-
posed into its constituent views, enabling the application of
standard multi-view geometry reconstruction techniques as a
post-process. Hereby, the origin of the multi-view data is ab-
stracted and makes it appear as if it had been recorded with
a physical system of a large number of physical cameras.

We rely on a semi-automatic process for labeling with
suitable editing and visualization tools that help the user to
interactively achieve the goal with little effort. In the follow-
ing, we will detail the steps of our algorithm.

c© The Eurographics Association 2012.



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images

The input to our algorithm is the kaleidoscope image K
with the associated virtual-camera image C. Our goal is to
label the pixels of K; a pixel in the resulting label image L
is either classified as background or we associate the corre-
sponding virtual camera (Cpn′p ). Determining L manually is
difficult; one would not know which virtual camera to asso-
ciate. Instead, we offer a simpler solution; one only marks
background pixels (those not showing any part of the ob-
ject). We propose an easy-to-use and efficient user interface
(Sec.3.1) because despite the input being binary, automatic
methods are likely to fail.

Internally, our algorithm uses the background-pixel input
to update and determine the labeling (Sec. 3.2). The princi-
ple is to employ a space-carving process [RMSI11]. In fact,
every ray corresponding to a background pixel can be used
to determine empty regions of the bounding box B of O, i.e.,
where there is no object. By marking sufficiently many back-
ground pixels and removing the corresponding regions from
B, the visual hull of the object is reconstructed on the fly.
Using the visual hull, a labeling can be determined. At the
same time, we inherit the limitations of [RMSI11] by using
the visual hull instead of the true object geometry.

Because our solution interactively updates a 3D recon-
struction, we can use it directly to guide the user when mark-
ing background pixels (Sec.3.2). Further, we can shade the
model with a novel image-based technique, that applies sur-
face color from K, capturing even view-dependent effects, to
ease understanding of the shape (Sec.3.3).

3.1. User Interaction

In theory, the user could click on each pixel in K and asso-
ciate it to the background or the object. In practice, such an
approach would be cumbersome. Instead, we propose an on-
the-fly computation of the visual hull while attributing pixels
to the background. Hereby, the user can visualize the influ-
ence of his indications on the reconstruction and then add
pixel classifications only where needed.

Our interface offers various means to mark regions, in-
cluding tools, such as different brushes and brush sizes,
eraser, magic wand, flood fill, and undo. These tools are
used to mark pixels in K as background. Starting with the
magic wand and flood fill, one can then rely on larger, after-
wards finer brush strokes. Every change, triggers visual hull
updates (Sec.3.2), which are illustrated efficiently (Sec.3.3)
and we overlay the resulting label image L on the canvas K.

While it would be possible to store a single mask, it is
more user friendly, to store the regions defined by one of
the previous drawing operations in a so-called patch. These
patches are small textures that are kept together with an off-
set to localize them in K. All patches are shown with a small
preview in a sidebar of the interface and the user can simply
decide to remove a patch by deleting it from the sidebar. The
second advantage of keeping these interactions in patches

is that we can employ various resolutions for the different
patches, in case sub-pixel drawing is necessary. Technically,
we store the patches as binary textures and their content is
ORed when being splat into the view. Usually, each brush
stroke can be added with a single splat, yet, when deleting a
brush stroke, all patches are splat. In practice, this operation
remains fast enough to not disturb the user.

Each time a new background pixel is added, we read its
underlying camera set Cp. We can conclude that the corre-
sponding viewing rays of all cameras missed the object. This
observation implies that a single background pixel actually
delivers information about various viewing rays at once. In
order to make use of this insight, we compute and display
the reconstructed visual hull. With this visualization, the user
can easily decide whether a sufficient amount of pixels have
been classified (see Fig. 4). Vice versa, a click on a voxel
in the current 3D reconstruction reveals all its corresponding
pixels in K. We further allow the user to re-fill voxels. Here,
the user clicks on a voxel and spans a sphere. We then back-
project all voxels inside the sphere to K and erase the back-
ground mask at those pixels. We will see how to perform
the visual hull reconstruction from the background mask and
how to even shade the resulting 3D model convincingly in
the following sections.

3.2. Efficient Visual Hull Reconstruction and Labeling

The visual hull is initially represented by a voxel volume de-
fined by B. All voxels are initialized to one. For each viewing
ray resulting from a background pixel, we can carve (set to
zero) several voxels from the volume. Consequently, only a
few region indications are often enough to yield a good re-
construction of the model. To understand this point, one can
consider a simple example. When no object is placed in the
kaleidoscope, all rays are background. Marking only those
that are in the footprint of one camera is often sufficient be-
cause, then, B will be found to be empty.

To keep the updates of the visual hull efficient, we make
use of several observations. First, changes to the visual hull
only occur where the user placed a background brush stroke.
Hence, we do not reconstruct everything in each frame, but
restrict the visual hull update to this particular region. To per-
form the voxel carving for a given background pixel p, we
perform a ray marching procedure following the correspond-
ing straightened viewing ray for each of the virtual cameras
in Cp. The use of the virtual camera concept avoids intersec-
tion computations with the mirror planes and we can sim-
ply intersect the bounding box of the object with each cam-
era ray in order to determine the ray marching region. The
per pixel, virtual camera ray marching can be performed in
parallel, even without the need for memory synchronization,
making it highly suitable for the GPU.

Care has to be taken to not miss voxels. So, instead of
performing a fixed-step ray marching, we rely on an accurate

c© The Eurographics Association 2012.



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images

method [AW87], which can be efficiently implemented on
the GPU. The idea is to advance from one plane along the
principle axes to the next, where all planes are defined by
the voxels’ faces. For every voxel traversed by the ray, we
update the visual hull (represented as a 3D texture) and set
the corresponding voxel value to zero.

To compute a labeling using the visual hull, we go over C
and launch for each virtual camera and pixel a correspond-
ing ray against the visual hull in a shader. Starting with the
lowest camera index (the least reflections), we can stop the
loop per pixel, as soon as a tested ray leads to an intersection.
The corresponding camera index is then stored in L.

We experimented with various implementations. Ulti-
mately, the best performance was reached, when storing all
virtual camera matrices as a group of four vec4 in a 1D tex-
ture buffer. The voxel volume was best represented with an
8bit 3D texture containing a single color channel and up-
dated using the new OpenGL image-load-store extension.
To reduce memory consumption, we also tried solutions that
pack groups of voxels into bit sequences [ED08, SS10], e.g.
packing a group of 4x4x4 voxels in a RG32UI texture. Un-
fortunately, this requires read-write synchronization (atomic
texture access) for the visual hull computation, which makes
the computation slow. Furthermore, despite the lower band-
width, even the display of the visual hull, as explained in
the next section, proved too slow because the bit sequences
needed to be reinterpreted.

3.3. Visual Hull Display

Having a visual hull representation efficient display meth-
ods are needed for visual feedback. We provide two different
ones; a direct rendering of the visual hull via ray marching,
as well as an advanced mode that shades the model via an
image-based solution using derived normals.

The standard mode that shows the volume as a semi-
transparent object is useful when wanting to illustrate all
its intersections with virtual rays corresponding to a drawn
patch (see Fig. 4). Here, we apply a simple emission and ab-
sorption model, giving the voxels specified colors and den-
sities depending on whether they are part of the visual hull,
the current patch, or the intersection of both.

In order to produce a realistic view, we make use of K
to shade the object. Here, we apply a deferred render-
ing approach. In a first rendering pass, we create a posi-
tion and normal image of the first visible layer of the vi-
sual hull for the current view camera. The images are used
in a second pass, where we perform the actual shading, ac-
cessing K. Finding the first visible layer is again achieved
via ray marching. While voxels have 6 different normals
(one for each face) that we can directly use for visualiza-
tion purposes, better results are obtained by computing nor-
mals from an isosurface of a downsampled volume. In other
words, we compute an average density of the voxels in a

Figure 4: Semi-transparent mode (left): Depending on its
state, each voxel is assigned color and density: part of the
visual hull (white, low density), covered by the brush (blue,
medium density), intersection of both (red, high density; top
part of image). Image-based shading (middle and right):
Color values are transferred from the kaleidoscope image.

small neighborhood. Next, we compute a normal via finite
differences. Depending on the neighborhood size, these sur-
face normals are usually of sufficient quality. In the second
pass, we project the first visible voxel V to all virtual camera
views. For each view, we check via L whether V is classified
as being visible by this view. For each corresponding color
value Cc

i from view i, we compute a weight wi and display
the color ∑wi Cc

i on the screen. If V is not visible (label is
not valid) for camera i, the surface normal n is opposing the
virtual camera direction Cω

i , or the virtual camera direction
is opposing the view camera direction ωp, then wi is zero.
Else, we define wi := (Cω

i ·ωp)(Cω
i · n).The first factor fa-

vors virtual-camera views close to the current view (to cap-
ture specular effects), the second term ensures that no false
views are considered. Fig. 4 shows results of this method.

4. Results

Figure 5: Showing the application in action: The user draws
in the window on the right side. Already drawn patches are
rendered with a green checkerboard pattern and are listed
in a widget at the right border. The current visual hull and a
preview of the current brush are rendered in the left window.

Our software provides the possibility of direct user feedback
on a standard computer system with an NVIDIA GeForce
560Ti. Even when just hovering the mouse, the application
shows the effect of the potential drawing operation in 3D,
see Fig. 5. During drawing, the visual hull visualization is
constantly updated, giving the user instant feedback in the
3D domain. This gives a clear advantage over drawing with

c© The Eurographics Association 2012.



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images

Figure 6: Left: Labeling result for the angel. Right: Corre-
sponding visual hull rendered with image-based shading.

standard image-editing tools like Photoshop and performing
a blind visual hull reconstruction as in previous work. Fur-
ther, the labeling can be quickly recomputed after each oper-
ation and visualized in the 2D kaleidoscope image (although
this particular step is not optimized in our current implemen-
tation, it takes less than 400ms for a 20MP image). Via the
feedback, the user is guided towards areas where a refine-
ment of the background mask is useful, making the entire
labeling very simple. Similarly, the concurrent 3D visualiza-
tion and label image help the user in adjusting false back-
ground markings. In such a case not just the 3D visualization
will look incorrect, also the labeling does not correspond
to the kaleidoscope color image anymore. Direct feedback
mechanisms enable quick and correct background markings.

While the labeling is a two-dimensional feedback, the 3D
visual hull can be useful as well. If the user marks pixels in
K, the corresponding ray bundles can affect many parts of
the 3D space at once. The semi-transparent rendering of the
visual hull and the ray bundles enables the user to quickly
estimate the voxels part of the ray bundles in relationship to
the voxels of the visual hull.

The application itself scales well with a high number of
strokes. Memory consumption is kept low as stroke data is
stored in form of compact patches. Further, visual hull up-
dates are fast, especially when limiting to the bounding box
of a stroke, leading to instant feedback of the 3D visual hull
(less than 200ms). Operations like undo, erasing, or deleting
strokes are slightly more costly as they require to process all
strokes and, hence, a full reconstruction of the visual hull.
Here, the computation time may reach around a second, and
a delay can be experienced. Nonetheless, we observed that
those operations are not very often performed and the entire
labeling process stays user-friendly.

Overall, the system allows a user to rapidly segment an
object and the examples in this paper all involved less than
15 minutes (usually 10-15) of user interaction. The effec-
tiveness is best illustrated in the accompanying video. An
additional example is shown in Fig. 6.

5. Conclusions

Kaleidoscope systems have many advantages over multi-
camera systems; they are cheap and easy to use. Nonethe-
less, separating the fused views can be difficult. Our solu-
tion is an easy-to-use system that allows a user to rapidly
segment object pixels from the background. The input is au-
tomatically transferred to other parts of the image by relying
on tests against an on-the-fly construction of the visual hull
of the object. We presented an efficient algorithm to perform
these computations and various rendering strategies to sup-
port the user in its task. With our system, the use of kaleido-
scope imagery can become an interesting alternative to more
complex multi-camera setups.

An interesting area for future work is the extension of
our solution by adding more automation to the segmenta-
tion process. This can be done, for example, by incorporat-
ing user-supervised cosegmentation or GraphCut-based ap-
proaches into the existing system.

Acknowledgements

This work was supported by the German Research Founda-
tion (DFG) through the Emmy-Noether fellowship IH 114/1-
1 and by the Intel Visual Computing Institute at Saarland
University.

References
[AW87] AMANATIDES J., WOO A.: A Fast Voxel Traversal Al-

gorithm for Ray Tracing. In Eurographics ’87 (1987), pp. 3–10.
5

[BJ00] BOYKOV Y., JOLLY M.-P.: Interactive Organ Segmenta-
tion using Graph Cuts. In Proc. of MICCAI, LNCS 1935 (2000),
Springer, pp. 276–286. 2

[BKP∗10] BATRA D., KOWDLE A., PARIKH D., LUO J., CHEN
T.: iCoseg: Interactive Co-segmentation with Intelligent Scribble
Guidance. In Proc. CVPR (2010), pp. 1–8. 3

[CCSS01] CHUANG Y.-Y., CURLESS B., SALESIN D.,
SZELISKI R.: A Bayesian Approach to Digital Matting. In Proc.
CVPR (2001), pp. 264–271. 2

[CFRA07] CREMERS D., FLUCK O., ROUSSON M., AHARON
S.: A Probabilistic Level Set Formulation for Interactive Organ
Segmentation. In Proc. of SPIE Medical Imaging (2007). 2

[CKS97] CASELLES V., KIMME R., SAPIRO G.: Geodesic Ac-
tive Contours. IJCV 22, 1 (1997), 61–79. 2

[ED08] EISEMANN E., DÉCORET X.: Single-Pass Solid Vox-
elization for Real-Time Applications. In Proc. of Graphics Inter-
face (2008). 5

[FNJV06] FORBES K., NICOLLS F., JAGER G. D., VOIGT A.:
Shape-from-Silhouette with two Mirrors and an Uncalibrated
Camera. In Proc. ECCV (2006), pp. 165–178. 2

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., CO-
HEN M. F.: The Lumigraph. In Proc. SIGGRAPH (1996),
pp. 43–54. 1

[HP03] HAN J. Y., PERLIN K.: Measuring Bidirectional Texture
Reflectance with a Kaleidoscope. In Proc. SIGGRAPH (2003),
pp. 741–748. 1, 2

c© The Eurographics Association 2012.



O. Klehm, I. Reshetouski, E. Eisemann, H.-P. Seidel, I. Ihrke / Interactive Geometry-Aware Segmentation for the Decomposition of Kaleidoscopic Images

[IRM∗12] IHRKE I., RESHETOUSKI I., MANAKOV A., TEVS
A., WAND M., SEIDEL H.-P.: A Kaleidoscopic Approach to
Geometry and Reflectance Acquisition. In Proc. Workshop on
Computational Cameras and Displays (2012), pp. 1–8. 2

[KBCC10] KOWDLE A., BATRA D., CHEN W.-C., CHEN T.:
iModel: Interactive Co-segmentation for Object of Interest 3D
Modeling. In Workshop on Reconstruction and Modeling of
Large-Scale 3D Virtual Environments (2010), pp. 1–14. 3

[KWT88] KASS M., WITKIN A. P., TERZOPOULOS D.: Snakes:
Active Contour Models. IJCV 1, 4 (1988), 21–31. 2

[LCT09] LANMAN D., CRISPELL D., TAUBIN G.: Surround
Structured Lighting: 3-D Scanning with Orthographic Illumina-
tion. CVIU 113, 11 (2009), 1107–1117. 2

[LCV∗04] LEVOY M., CHEN B., VAISH V., HOROWITZ M.,
MCDOWALL I., BOLAS M.: Synthetic Aperture Confocal Imag-
ing. ACM TOG 23 (August 2004), 825–834. 2

[NRK98] NARAYANAN P. J., RANDER P., KANADE T.: Con-
structing Virtual Worlds using Dense Stereo. In Proc. ICCV
(1998), pp. 3–10. 1

[RKB04] ROTHER C., KOLMOGOROV V., BLAKE A.: GrabCut:
Interactive Foreground Extraction using Iterated Graph Cuts.
ACM TOG 23, 3 (Aug. 2004), 309–314. 1, 2

[RMSI11] RESHETOUSKI I., MANAKOV A., SEIDEL H.-P.,
IHRKE I.: Three-Dimensional Kaleidoscopic Imaging. In Proc.
CVPR (2011), pp. 353–360. 1, 2, 3, 4

[SS04] SEZGIN M., SANKUR B.: Survey over Image Threshold-
ing Techniques and Quantitative Performance Evaluation. SPIE
JEI 13, 1 (2004), 146–168. 2

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast Parallel Surface and
Solid Voxelization on GPUs. ACM Trans. Graph. 29, 6 (Dec.
2010), 179:1–179:10. 5

[UPT∗08] UNGER M., POCK T., TROBIN W., CREMERS D.,
BISCHOF H.: TVSeg - Interactive Total Variation Based Image
Segmentation. In Proc. BMVC (2008), pp. 335–354. 1, 2

[VS91] VINCENT L., SOILLE P.: Watersheds in Digital Spaces:
An Efficient Algorithm based on Immersion Simulations. IEEE
Trans. PAMI 13, 6 (1991), 583–598. 2

[WJV∗05] WILBURN B., JOSHI N., VAISH V., TALVALA E.-V.,
ANTUNEZ E., BARTH A., ADAMS A., HOROWITZ M., LEVOY
M.: High Performance Imaging using Large Camera Arrays.
ACM TOG 24, 3 (July 2005), 765–776. 1

c© The Eurographics Association 2012.


