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Abstract

We introduce three-dimensional kaleidoscopic imaging,
a promising alternative for recording multi-view imagery.

The main limitation of multi-view reconstruction tech-
niques is the limited number of views that are available from
multi-camera systems, especially for dynamic scenes.

Our new system is based on imaging an object inside a
kaleidoscopic mirror system. We show that this approach
can generate a large number of high-quality views well dis-
tributed over the hemisphere surrounding the object in a
single shot. In comparison to existing multi-view systems,
our method offers a number of advantages: it is possible
to operate with a single camera, the individual views are
perfectly synchronized, and they have the same radiometric
and colorimetric properties.

We describe the setup both theoretically, and provide
methods for a practical implementation. Enabling interfac-
ing to standard multi-view algorithms for further processing
is an important goal of our techniques.

1. Introduction

Since its invention by David Brewster in 1815 the Kalei-
doscope has fascinated our minds. Its ability to generate
hundreds of intricately interwoven views of the same object
generates beautifully patterned images. For imaging pur-
poses kaleidoscopic systems have so far been used for re-
flectance measurements [9, 1] owing to their ability to gen-
erate a large number of views of the target, almost cover-
ing the full hemisphere surrounding the measured surface
patch.

The limitation of only being able to image planar objects
is due to the fact that three-dimensional objects are not re-
stricted to be imaged in simple regions in the camera view.
It is a-priory impossible to determine the virtual view of
any one pixel if the object geometry is unknown. A major
challenge is potential self-occlusion of the object that is be-
ing imaged. The effect is familiar from viewing ones own
image in-between a set of bathroom mirrors.
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Figure 1. The pixel labeling problem solved by our algorithm: In a
kaleidoscopic mirror system, objects occlude their mirror images
(left). With unknown object geometry, it is a-priory impossible to
determine the virtual view of any particular pixel. The techniques
proposed in this paper determine a labeling, assigning a virtual
view to every pixel (right, virtual views are color-coded).

In this paper, we propose a general solution to this prob-
lem, see Fig. 1.

So far, the occlusion problem has been circumvented by
only using simple planar mirror systems for virtual multi-
view imaging. Examples include the use of planar mir-
rors to generate virtual stereoscopic views [20, 6, 7] and
virtual multi-view systems consisting of two planar mir-
rors arranged such that 5 or 7 object views can be ob-
tained [4, 11, 14, 28]. When using these systems, however,
care has to be taken to position the object such that there is
no occlusion between the real object and its mirror images.
Also, higher-order reflections (in this case not higher than
two or three), should not overlap.

Another way to acquire multi-view imagery is the use
of multi-camera systems [27] or light field camera de-
signs [17, 8, 22]. These options are typically expensive
if many cameras are used or involve time-sequential cap-
ture. In addition, available sensor resolution is used in-
efficiently, mostly recording background information. For
in-camera light field imaging, e.g. [22], there is the lim-
ited aperture of the main lens and thus the achievable cover-
age of view-points is limited. Time sequential capture can
also be performed with a moving planar mirror [21, 12, 10].
Mirrors have also been used to capture light field infor-
mation [16, 24] but without considering inter-reflections.
Light field imaging has also been performed with a conical
mirror [25]. More typically, catadioptric systems are used
to achieve a wide field of view as in panoramic imaging,
e.g. [18]. 3D reconstruction using a conical mirror device
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by taking multiple images has also been demonstrated [13].
In contrast to these techniques, we aim at performing

massively multi-view imaging with a single high-resolution
camera using only a single image. The virtual views should
cover a large amount of viewing directions and the sensor
area of the camera should be used as efficiently as possible.
Kaleidoscopic imaging systems are a means to achieve this
goal if the pixel labeling problem can be solved.

More precisely, we introduce techniques to determine
which virtual view is associated with any one pixel in a
kaleidoscopic image, see Fig. 1 (right). For this, we develop
a theoretical framework that lets us describe arbitrary sys-
tems of planar mirrors that are being imaged by a projective
camera.

We present calibration and processing techniques for
kaleidoscopic imaging systems that enable an almost trans-
parent interface to standard multi-view reconstruction tech-
niques. The motivating factor is that existing algorithms
should not be required to change if a new imaging modality
becomes available.

For this reason, we do not assume any scene-dependent
characteristics other than that foreground and background
be separable, i.e. kaleidoscopic silhouette images should be
available. We aim at labeling all silhouette pixels in a kalei-
doscopic image according to the virtual view they belong
to using only a single silhouette image and the geometric
properties of the imaging system.

This sets the agenda for the remainder of the paper. In
Sect. 2 we introduce a general framework to perform this
labeling for any system consisting of planar mirrors and a
projective camera. Sect. 3 then introduces a prototype sys-
tem with which we verify our ideas. We also present suit-
able calibration procedures for such a system. In Sect. 4 we
describe a number of experiments we performed to charac-
terize our system. Sect. 5 then discusses the general proper-
ties and practical limitations of kaleidoscopic imaging de-
vices before we conclude with a discussion of future work,
Sect. 6.

2. Kaleidoscopic Imaging Theory

In mathematics, kaleidoscopic imaging systems have
been analyzed in terms of group theory [3, 26]. In math-
ematical language, a kaleidoscopic system is one that, by
repeated mirroring of a base chamber, Fig. 2 (a),

1. provides a perfect space-partitioning of the enclosing
space, see Fig. 2 (b), and

2. maps the base chamber to virtual or mirror chambers
in such a way that the orientation of the object it con-
tains is preserved, irrespective of the sequence of mir-
ror operations used to generate the mirror chamber,
Fig. 2 (c).

(a)

base chamber mirror chamber

(1) (2)

(3) (4)

(b) (c)

mirror space

Figure 2. Mathematical kaleidoscopic systems generate a space
partitioning by repeated mirroring of the base chamber (a). The
partitioning covers the full space. We refer to it as mirror space (b).
Additionally, mathematical kaleidoscopes are required to preserve
the orientation of the mirrored chambers, irrespective of the mir-
roring sequence taken to generate the chamber (c).

If these two requirements are fulfilled the system generates
a group of transformations where the basic transformations
are defined by the mirrors of the base chamber and con-
catenation of transformations generates new members [3].
It should be noted that this construction is independent of
any viewpoint for the scene. It is based on purely geomet-
ric considerations. The only kaleidoscopic structures in this
sense are the rectangle, the equilateral triangle, the isosceles
right triangle and the right triangles with 30◦−60◦−90◦ [3].

In this article, we interpret the term kaleidoscopic in a
broader sense, using it to describe any system consisting of
a number of planar mirrors in arbitrary configuration in con-
junction with a projective imaging device such as a camera.
We refer to such a system as a generalized kaleidoscopic
imaging system. In the following we show that such a sys-
tem also generates a space-partitioning but that it does not
preserve the orientation of the chambers nor continuity be-
tween the chamber boundaries. For the purposes of three-
dimensional imaging, however, these conditions are shown
to be sufficient to allow for tractable and robust algorithms
for the pixel labeling problem.

2.1. Space Partitioning

The goal of this subsection is to introduce the tools nec-
essary to understand image formation in complex systems
of planar mirrors. For convenience of illustration we de-
velop the concepts in two dimensions, the generalization to
the three-dimensional case is straight-forward. The value
of a space-partitioning lies in the fact that every position in
mirror space can be uniquely associated with a position in
the base chamber, i.e. that there exists a surjective mapping
between the mirror space and the base chamber.

Consider a pinhole camera with projective center C in
the base chamber of a generalized kaleidoscopic imaging
system. Our goal is to describe the resulting reflected ray
geometry, see Fig. 3 (a), in an intuitive way.

The ray l is reflected off the mirrors and traverses them
in a particular order LN = (3, 2, 1, 2, 1, 3, 1, . . .) for a par-
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Figure 3. A ray in a generalized kaleidoscopic system is reflected
off the planar mirrors (a). “Unfolding” of the ray can be performed
by mirroring the base chamber instead of the ray (b). Two neigh-
boring rays typically share a common unfolding scheme (c). Upon
intersection with different mirror planes this coherence breaks
down (d).

ticular number N of reflections. Here, LN is an ordered
N -tuple describing the mirror sequence that the ray inter-
sects. It is indicative of the light path taken by the ray inside
the system. We can “unfold” this light path by mirroring
the base chamber instead of the ray, creating a sequence of
mirror chambers along the straightened ray, see Fig. 3 (b).
Upon transforming the mirror chambers, along with the ray
segment contained therein, back to the base chamber, we
re-obtain the “folded” light path of Fig. 3 (a).

In general, two neighboring light paths l and l′, Fig. 3 (c),
traverse the system in a similar manner, i.e. LN = L′N for
some reflection count N . This is the reason for obtaining
recognizable virtual views in systems of planar mirrors. As
long as this condition persists, the space partitioning gener-
ated by one of the rays, e.g. Fig. 3 (c), is a valid explanation
for both l and l′. This argument breaks down when the two
rays hit different mirrors at some reflection count N̂ > N ,
see Fig. 3 (d), and LN̂ 6= L′

N̂
.

Let us investigate this case more closely. The situation
is depicted in Fig. 4 (a). Two neighboring rays l and l′

are incident on two different mirrors after having traversed
the base chamber and two mirror chambers similarly, i.e.
L2 = L′2 = (2, 1), but L3 = (2, 1, 3) 6= (2, 1, 2) = L′3.
Unfolding the light paths in this case leads to a situation
which is incompatible with a space-partitioning, Fig. 4 (b).
Even though the rays can be extended to L4 = (2, 1, 3, 2)
and L4 = (2, 1, 2, 3)′, respectively, the next extension is
uncertain. The overlapping mirror chambers offer two ex-
planations for part of the mirror space.

The situation can be resolved, however, using the fact
that rays l and l′ share a common point, i.e. the center of
projection C. In fact, all rays share this point. Using this
information it is easy to see that a proper space partitioning
can be obtained by using the chamber system generated by l
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Figure 4. Two neighboring rays approaching an intersection with
different mirror planes (a), the space partitioning is common for
both rays so far. Propagating the rays further, a collision between
space partitioning explanations occurs (b). It can be resolved by
introducing a line of discontinuity (c).

to the left of the segment [V, V∞), and the one generated by
l′ to its right. We call these lines of discontinuity referring
to the discontinuity introduced into the mirror space. It is
obvious that no other ray passing through C can intersect
[V, V∞) except for the one that is passing through C and V .

Summarizing, the space partitioning scheme provides us
with a tool to unfold mirrored light paths, turning them
into straight rays. The individual ray segments can then be
folded back by transforming the containing (potentially par-
tial) mirror chamber onto the base chamber. This way, any
point in the virtual mirror space can be associated uniquely
with a point in the base chamber (the opposite is not true).
It should also be noted that every mirror chamber in mirror
space corresponds to a unique camera view as seen from
camera center C. In the following we are thus able to apply
tools from projective reconstruction to our setup, namely
the visual hull concept [15].

2.2. System Containing Objects

Ultimately, our goal is to label each

C1

2

3
4

5
67

pixel of our projective camera image
with the mirror chamber where its cor-
responding ray intersects the object.
As discussed before, this information
corresponds to determining the virtual
view point for each pixel of the kalei-
doscopic view. An illustration of this
is shown in the figure to the left. Dif-
ferently colored cones encode differ-
ent viewpoints of the object. The cut-

away virtual object generated by the line of discontinuity is
blocked by self-occlusion. Objects 1 − 4 are fully visible,
5 and 6 are partially visible while 7 is fully occluded. Even
if 7 was visible, only part of it could be observed due to the
space partitioning introduced by the mirrors.

To achieve the labeling, it is necessary to infer some ge-
ometric structure of the object under consideration. As can
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be seen from the figure, once the object geometry is known,
labeling the pixels is trivial. The object only has to be ren-
dered in all its visible mirrored positions, as determined by
the space-partitioning of the system, with occlusion taken
into account.

Our method to determine an approximate geometry of
the object is based on considering rays that do not intersect
any real or mirrored version of the object. However, if an
unlimited number of reflections is permitted, an extended
object is visible in all pixels [5]. It is thus necessary to
limit the number of mirror reflections that can occur in a
kaleidoscopic system.

2.2.1 Limiting the Number of Mirror Reflections

To limit the number of virtual views it is necessary to switch
to the three-dimensional case. In three dimensions it is pos-
sible to adjust the tilt of the mirror planes such that any
incident ray undergoes at most N = dπαe reflections, where
N only depends on the tilt angle [5].

The figure to the left shows a two-ll'

12
1

1

1

1

2

2

2
2

dimensional cut-away view of a three-
dimensional base chamber (yellow)
with tilted mirrors. At the apex, the
angle is α. Unfolding the base cham-
ber to generate the mirror space, we
immediately see that an arbitrary ray
cannot cross more then N + 1 cham-
bers (including the base chamber), i.e.
the number of reflections is limited to

N . The ray indicated in red is the limiting case of grazing
incident angles at mirror 1.

2.2.2 Reconstructing the Visual Hull of the Object

With a limited number of virtual views it is possible to de-
vise a setup where gaps between an object and its mirror
images are observable. These gaps provide the means to
perform a visual hull reconstruction of the object.

Consider a ray that does not intersect the object nor any
of its virtual counterparts. Folding back this ray into the
base chamber, we obtain a reflected light path that is guar-
anteed to be free of intersections. Performing this operation
on the set of all rays that do not intersect the object any-
where in mirror space, we obtain a space carving scheme
to determine the visual hull of the object: It is computed
by successively removing free space from an initial volume
that is marked as containing the object.

2.2.3 Labeling the Image

The visual hull computed this way can effectively be used as
a geometric proxy for the object. By transforming the visual
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Figure 5. Unreliable pixel labeling can occur by a ray intersecting
the approximate visual hull while the real ray passes the object.
Two cases are important: (a) the ray passes at an object boundary
and (b) the object has a hole that cannot be recovered from sil-
houette information. The pixels can be grouped into reliable and
unreliable pixels according to the number of visual hulls they in-
tersect (one and more than one respectively).

hull into the mirror chambers and intersecting the straight-
ened camera rays in unfolded mirror space with the set of
mirrored visual hulls, we can label the rays w.r.t. the mirror
chamber where the ray first intersects the visual hull. This
way a virtual view of the object is determined for each pixel.

There is one important drawback to this scheme: the vi-
sual hull is not the true object geometry (in fact the visual
hull as seen by an equivalent real camera system would be
sufficient, but it is also unknown). Especially in cases of
overlapping silhouettes it is possible that rays that intersect
the visual hull do not actually intersect the real object, see
Fig. 5.

In practical situations, the case of Fig. 5 (a) is the most
important. The visual hull as obtained from the mirror sys-
tem is slightly too large and the ray l is not intersecting ob-
ject OB while intersecting its approximate visual hull. The
pixel is classified as belonging to base chamber B. In re-
ality, however, the ray intersects the virtual object O1 ob-
tained by reflection through mirror 1 and thus should be la-
beled as belonging to chamber 1.

We have been unable to provide a narrow classification
rule for these types of pixels. We can however show that
the problem is unsolvable for general objects and that there
is thus no simple solution, i.e. one without heuristics. Con-
sider the case of Fig. 5 (b). The real object O′B , which has
the same approximate visual hull as OB , has a very nar-
row hole (in the limit a Dirac-like opening only permitting
a single ray), only visible from C. The ray passes through
the hole but is blocked by virtual object O′1. Since the hole
direction only permits a single ray, the hole is not visible
from any other direction. It is thus impossible to update the
visual hull to include the hole and the labeling fails. The
proper course of action is to classify all pixels correspond-
ing to rays intersecting more than one real or virtual ob-
ject as unreliable which means that they cannot be properly
assigned to any particular view, see Fig. 5 (c). Note how-
ever that there is only a certain number of candidate views,
namely the ones corresponding to the intersected virtual ob-
jects. Future multi-view algorithms could exploit this infor-
mation.
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Figure 6. Photograph of our practical setup, (a) left. A view inside
showing the mirror space, (a) right. (b) and (c): alternative setups
and simulated images for these.

In practice the hole problem, Fig. 5 (b) is insignificant in
all cases that we investigated. The case of Fig. 5 (a) how-
ever, where different virtual views meet side by side, is un-
avoidable except for simple systems where there is no over-
lap between mirror images. The better the visual hull ap-
proximation to the true visual hull, the smaller is this error.
Since we have a large number of views (typically around
200 usable ones) this error is small and can be mitigated
by enforcing a safety region around occlusion boundaries
in image space.

3. Practical Implementation

It should be noted that the tools developed so far are ap-
plicable to any system of planar mirrors imaged by a projec-
tive camera. In the following we concentrate on a specific
kaleidoscopic setup to verify our theoretical developments
in practice.

3.1. Design Choices

We chose the frustum of a

(a)

triangle hexagon

(b)

(c)

Figure 7.

triangular pyramid as our base
chamber, the narrow end pointed
downward, see Fig. 6 (a). This
type of system is preferable to
the ones shown in Fig. 6 (b)
and (c). In (b) the number
of virtual views cannot be lim-
ited, yielding a cluttered hori-
zon without usable gaps between
the virtual views. In (c) we ob-
tain views as if the camera was
placed inside a giant sphere, the
object being on the surface. In
this type of setup the views can
be separated but the object is al-
ways seen from the top, resulting
in a low view point variation.

The triangular base was cho-
sen for both theoretical and prac-
tical reasons. The latter include simplicity of the system
and its construction as well as simplified calibration proce-

dures. On the theoretical side, the most important point to
consider is the depth-of-field of the camera. Since we have
to work with finite apertures, there is only a certain depth
range where blur-free virtual views can be acquired. It is
thus desirable to fit as many virtual views as possible into
that range.

Consider a circular area being available for the base
chamber, i.e. the black circle in Fig. 7 (a). The figure
shows two different candidate base chamber geometries.
Two copies of the base chamber can be placed next to each
other at a distance the diameter of the inscribing red circle.
The radius of the incircle is given by r = R cos πn , where R
is the radius of the circumcircle and n the number of sides
of the polygon. Clearly the ratio R/r should be as small as
possible for fitting the most virtual views into a given depth
range. This minimum is obtained for the triangle. A com-
parison of a triangular and a hexagonal space-partitioning
scheme are shown in Figs. 7 (b) and (c).

We chose the opening angle of the system to permit
up to 10 levels of reflection (≈ 6.8◦). The setup was
recorded by a Canon 5D Mark II equipped with a Canon
EF14mm f/2.8L USM lens. The smallest aperture of this
lens is f/22. We set it to f/20 for our experiments to limit
diffraction effects. The mirrors are optical front-surface
mirrors in the low end of the price range (≈ $200).

3.2. Geometric Calibration

We calibrate the intrinsic parameters of the camera
using a number of checkerboard images using Zhang’s
method [29] as implemented in Bouguet’s calibration tool-
box [2]. We then place the camera into our setup and ob-
serve a checkerboard pattern placed in the kaleidoscope at
different heights above the ground plane. This measure
helps to keep the calibration consistent in the whole acqui-
sition volume. We remove radial distortion from the im-
ages and identify the real image as well as the first-order
reflections of the checkerboard. We compute plane equa-
tions using the known intrinsics and from those estimate
initial guesses for the mirror planes. We perform a bun-
dle adjustment procedure, optimizing the camera extrinsics
and the mirror plane parameters while keeping the intrin-
sics fixed. We then use this initial calibration to predict the
position of the second-order reflections. Matching to the
extracted corners we optimize again to minimize the repro-
jection error. We then proceed in a similar manner to add
third- and higher-order reflections. The checkerboards are
typically well visible up to the sixth reflection order and we
use all of this information in a final bundle adjustment of all
parameters, camera intrinsics, extrinsics and mirror plane
parameters. The reprojection error is typically within 1.2
pixels.
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3.3. Radiometric Calibration

We first linearize the camera response by taking expo-
sure sequences of 5 images and applying the technique of
Robertson et al. [23] as implemented in the PFSTools pack-
age [19]. We then perform high-dynamic range imaging of
a Spectralon target, an almost perfectly Lambertian reflec-
tor, under illumination generated by placing an area light
source close to the kaleidoscope’s upper opening. Since
the light source is mirrored in the same manner as the view
point, we obtain a uniform incident light distribution on the
Spectralon patch. The patch should thus appear uniform un-
der different viewing directions. However, since our virtual
views are generated by mirroring rays, the images are at-
tenuated by the mirror surface. To estimate the attenuation
factor, we extract image patches of the Spectralon target for
virtual views with different reflection counts and compute
the median color value of the patch. Ratios of values from
viewpoints of different reflection count then allow for the
estimation of the attenuation coefficient. Using this proce-
dure, our mirrors were estimated to have 87% reflectivity,
this value being in good agreement for all color channels.

3.4. Space Carving Implementation

We implemented our space carving scheme as a voxel-
based algorithm. The voxel grid is defined in the base cham-
ber. To account for diverging rays we implemented a sub-
sampling scheme for the pixels in the camera view. We also
exclude a region of ε ≈ 5mm around the planes of discon-
tinuity to avoid erroneous ray paths due to potential errors
in the estimation of the mirror plane parameters. To achieve
the most efficient use of the available resolution, the size
of the bounding box of the voxel grid is chosen to enclose
the object tightly. The number N of reflection levels to be
used for visual hull reconstruction and pixel labeling is a
user parameter to our algorithm.

4. Experimental Results
We recorded our images at a resolution of 3866 × 2574

pixels. The data sets as well as the computed labeling and
radiometrically corrected images are shown in Fig. 8. Ta-
ble 1 summarizes some statistics. All results have been
computed only using the silhouette image shown in Fig. 8
and the calibration information. The objects cover different
sizes and vary drastically in silhouette quality. The results
have been down-sampled for the paper due to size restric-
tions, please refer to the supplemental material for higher-
resolution results. The results in the figure were computed
using the information from 8 levels of reflection, equalling
166 views. For 9 reflection levels results deteriorated due
to insufficient accuracy of the silhouette estimation (chro-
matic aberration) and residual radial distortion, see Sect. 5.
The dark streaks in the images are due to the safety re-

gion around mirror boundaries. As can be seen in the re-
sults, we achieve almost pixel-accurate labeling results: if
errors occur, they are conservative, i.e. to the inside of
the object, the labeling is thus still correct. Overlaps be-
tween virtual views can be well resolved. The table shows
that the unreliable pixel measure is overly conservative and
that a heuristic can yield a much higher usable pixel count.
Since the objects do not have narrow holes this approach
appears reasonable. Further results can be found on our
web page: http://giana.mmci.uni-saarland.
de/projects/kaleidoscopic_imaging/.

5. Discussion
In this section we would like to discuss the physical limi-

tations of kaleidoscopic imaging systems as well as general
properties of the proposed algorithm.

We are operating the camera at the physical limits of the
optics. The most important aspect is the limited depth-of-
field of real camera systems. Since the virtual views cover
a very wide depth range, both very close to the camera for
the imaged real object and very far away, for the distant re-
flections, a suitable trade-off has to be found. Also, we use
a very wide field-of-view to cover the planet structure im-
posed by our prototype system. This implies that the higher-
order reflections which carry a lot of silhouette information,
since the object is seen from the side in these views, are im-
aged at the periphery of the image. Thus, any uncorrected
radial distortion and in particular other optical aberrations
found in these regions are of major concern. Chromatic
aberration was a major problem in our experiments. The
correct silhouette boundary is not discernible even by a hu-
man observer. The spread of the aberration is up to 7 pixels,
a much higher value than the geometric calibration error.
Use of a different lens might reduce this problem.

Incorrect silhouettes should never under-estimate the ob-
ject since this would lead to erroneous space carving results.
Surprisingly coarse silhouette estimates can in fact be used
with such system, see Fig. 8. The condition is that the inac-
curacies should not be correlated. Since a very high number
of views is available, geometric inconsistencies tend to be
discovered. However, a consistent over-estimation of the
silhouettes introduces errors.

An inherent property of our data is that they are multi-
resolution. Pixels in distant images of higher reflection lev-
els cover a larger surface area of the object. This apparent
disadvantage might turn out to be a useful feature in future
multi-view reconstruction algorithms. In any case it is a
particular property that cannot be achieved easily in differ-
ent systems.

Finally, scaling of the setup might present a problem.
However, e.g. Science World in Vancouver is operating a
kaleidoscope at human proportions. Foil mirrors can easily
be produced up to a size of 4 − 5m. We thus believe that
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Figure 8. Results from left to right: input image, silhouette image, computed visual hull, corresponding labeling, radiometrically compen-
sated image.

object # refl. subsample VH disc. # virt. views # labeled pixels # unreliable # occ. boundary
Cone 7 9 256× 256× 236 128 18.38% 2.31% 0.08%
Cone 8 9 256× 256× 236 166 19.60% 4.44% 0.12%
Cone 9 9 256× 256× 236 212 19.91% 5.04% 0.20%
Duck 7 9 256× 256× 221 128 15.16% 1.44% 0.06%
Duck 8 9 256× 256× 221 166 15.94% 3.46% 0.12%
Duck 9 9 256× 256× 221 212 16.24% 5.97% 0.19%
Pumpkin 7 9 300× 300× 346 128 25.70% 5.89% 0.16%
Pumpkin 8 9 300× 300× 346 166 27.20% 8.94% 0.21%
Pumpkin 9 9 300× 300× 346 212 27.79% 12.86% 0.26%
Vase 7 9 256× 256× 354 128 29.02% 10.64% 0.25%
Vase 8 9 256× 256× 354 166 30.41% 13.49% 0.33%
Vase 9 9 256× 256× 354 212 31.08% 15.29% 0.39%

Table 1. Statistics for the different data sets. From left to right: name of the data set, number of reflection levels used to compute result,
number of sub-samples per pixel, discretization of the visual hull, number of virtual views that have been used for computation, the number
of labeled pixels, unreliable pixels as a percentage of labeled pixels, and number of pixels in a 3 pixel error region to each side of an
occlusion boundary.

these systems are applicable to real problems of interest.

6. Conclusions and Future Work

We have introduced a general framework for dealing
with systems of planar mirrors imaged by a projective cam-
era. We have shown that these generalized kaleidoscopic
imaging systems can be used to obtain dense hemispher-

ical multi-view data that is calibrated both geometrically
and photometrically. The output of our techniques is thus
directly usable in standard multi-view reconstruction algo-
rithms. All information can be extracted from a single view,
enabling dynamic scene recording. We thus believe that
the proposed methods present a considerable step towards
high quality 3D reconstruction of dynamic objects, enabling
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practical hemispherical imaging. Due to the wide range of
views achievable with these systems it is possible to im-
age every surface point from a large number of directions.
It might thus become possible to perform simultaneous ge-
ometry and reflectance estimation on dynamic objects. The
setup is inexpensive when compared to multi-video acqui-
sition systems and makes better use of the available sensor
area. Additional advantages include perfect synchroniza-
tion and common radiometric and colorimetric properties
for all views.

Future work includes the development of better calibra-
tion procedures. It might be necessary to develop better
camera models for this purpose since we are operating at the
physical limits of our device, especially the optics. On the
theoretical side we would like to develop rigorous bounds
for the pixel labeling error at occlusion boundaries. Since
this is impossible in the general case, suitable object classes
that cover all scenes of interest while still enabling an es-
timation of a tight error bound have to be found. Future
algorithmic developments include the incorporation of in-
herently multi-resolution data in multi-view reconstruction
algorithms as well as investigating techniques to differenti-
ate between the limited number of views that are potentially
responsible for unreliable pixels.
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